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1. Introduction

A sign pattern matrix (simple sign pattern or pattern) is the matrix,

whose entries come from the set {+, —, 0}. The set of all nxn sign
pattern is denoted by @,. Let A = (a;;) € @,, the qualitative class of A

is defined by
Q(A) = {B € M,(R)| sgn(B) = A}.

For a square sign pattern matrix A, notice that in the computations of
(the signs of) the entries of the powers Ak, an “ambiguous sign”, written
as #, may arise when we add a positive sign to a negative sign. For
convenience, we call the set ' = {+, —, 0, #} generalized sign set and
define addition and multiplication involving the symbol # as follows

(addition and multiplication which do not involve # are obvious):

GO+ =@+ =# a+#=#+a=4#(forallael),
O-#=#-0=0, b-#=#-b=#(for all b e T\ {0}).

Matrices whose entries come from the set I' are called generalized sign
pattern matrices. Addition and multiplication of generalized sign pattern
matrices are defined in the usual way, so that the sum and product
(including powers) of generalized sign pattern matrices are still
generalized sign pattern matrices. In this paper, we assume that all the

matrix operations are operations of the matrices over the set I.

Let A = (aij) be a square generalized sign pattern matrix of order n.
The associated generalized digraph D(A) of A (possibly with loops) is
defined to be the digraph with vertex set V = {v;, vy, ---, v, } and arc set
E = {(v;, vj)| a;; # 0}. The associated generalized signed digraph S(A)
of A is obtained from D(A) by assigning the sign of a;; to each arc (i, j)
in D(A).

Let S be a signed digraph of order n. Then there is a sign pattern
matrix A of order n, whose signed associated digraph S(A) is S.
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Thus there is a corresponding relation between a signed digraph of

order n and a sign pattern matrix A of order n.

The graph-theoretical methods are often useful in the study of the
powers of matrices, so we now introduce some graph-theoretical concepts.
A walk Win a digraph is a sequence of arcs: e;, eg, -+, €5, such that
the terminal vertex of e; is the same as the initial vertex of e;,; for
i=1,2 -, k—1. The number % of edges is called the length of the walk
W, denoted by I(W). The sign of the walk W (in a signed digraph),

denoted by sgnW, is defined to be Hil sgn(e; ). Two walks W; and W,

in a signed digraph is called a pair of SSSD walks, if they have the same
initial vertex, same terminal vertex and same length, but they have

different signs.
A square generalized sign pattern matrix A is called powerful, if each
power of A contains no # entry. It is easy to see from the above relation

between sign matrices and signed digraphs that a sign pattern A is
powerful, if and only if the associated signed digraph S(A) contains no

pairs of SSSD walks.

Let A be a square generalized sign pattern matrix of order n and

2
A, A2, AS, --- be the sequence of powers of A. (Since there are only 4"
different generalized sign patterns of order n, there must be repetitions

in the sequence.) Suppose Al is the first power, that is repeated in the
sequence. Namely, suppose [ is the least positive integer such that there
is a positive integer p such that

Al = AP, (1.1)

then [ is called the generalized base (or simply base) of A, and is denoted
by I(A). The least positive integer p such that (1.1) holds for 7 = I(A) is

called the generalized period (or simply period) of A, and is denoted by
p(A).

We say that S is powerful, if A is powerful, (i.e., S contains no pairs of
SSSD walks). Also, we define (S) = I(A) and p(S) = p(A).
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As we know, a square matrix A of order n is reducible, if there exists

a permutation matrix P of order n such that

PAPT - (B 0),
D c

where B and C are square non-vacuous matrices. The matrix A is
irreducible, if it is not reducible.

For a generalized sign pattern matrix A, we use |A| to denote the
(0, +)- matrix obtained from A by replacing each nonzero entry by +.
Clearly, |A| completely determines the zero pattern of A. We have |AB| =
|A|B| for generalized sign pattern matrices A and B. In particular, we

have

k

k
A% =] A

A nonnegative square matrix B is primitive, if there exists a positive
integer / such that BF >0 (Ak 1s entrywise positive). The least such % is
called the primitive exponent of B, denoted by exp(B). A square
generalized sign pattern matrix A is called primitive, if |A| 1s primitive,
and in this case, we define exp(A) = exp(|4]). A digraph D is called a

primitive digraph, if there is a positive integer k such that for each vertex
x and vertex y (not necessarily distinct) in D, there exists a walk of length
k from x to y. The least such k is called the primitive exponent of D,

denoted by exp(D). As we know, a digraph D is primitive, if and only if D
1s strongly connected (or simply strong) and the greatest common divisor
(or simply g.c.d.) of the lengths of all the cycles of D is 1.

It is well known that a square matrix A is irreducible, if and only if
D(A) is strong, and A is primitive, if and only if D(A) is primitive, and
in this case, we have exp(A4) = exp(D(A)).

Also, a number of upper bounds for exp(D) can be established by

using the Frobenius numbers defined as below.
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Let ay, -+, a; be positive integers. Define the Frobenius set S(a;,
-, ap) as:
(aq, -+, a) = {nay + -+ rpay | n, -+, r, are nonnegative integers}.

It is well known that if g.cd.(ap, -, a;) =1, then S(q, -, a;)

contains all the sufficiently large positive integers. In this case, we define

the Frobenius number ¢(a;, ---, a;, ) to be the least integer ¢ such that
m e S(ap, -+, a; ) for all integers m > ¢.
Clearly, ¢®(a;, -+, a;)-1 is not in S(aq, -+, a;). It is also well

known that if g.c.d.(a, b) = 1, then ¢(a, b) = (@ -1)(b -1).

A square generalized sign pattern matrix A is called Zero-pattern-

symmetric (abbreviated zero-symmetric or simply ZS), if |A| is symmetric.
If matrix A is zero-symmetric, then D(A) can be regarded as an

undirected graph (possibly with loops). In this paper, we use an
undirected graph (possibly with loops) as the associated digraph of a
generalized zero-symmetric sign pattern matrix. We actually have both
directions on each edge of the graph.

The graphs which we consider in this paper are undirected graphs.
We actually have both directions on each edge of the graph. A path is a
non-empty graph P = (V, E) with vertex set vy, vg, ---, v}, and edge set

E = {vvg, vgvs3, -+, U_1U }. The number of edges of P is its length. P is

also denoted by vyvg -+ vp,.

For an undirected walk W of graph G and two vertices x, y on W, let
Qw(x — y) be the shortest path from x to y on W. Let @(x — y) be the
shortest path from x to y on G. For a cycle C, if x and y are two (not
necessarily distinct) vertices on C and P is a path from x to y along C,
then C \ P denotes the path or cycle from x to y along C obtained by
deleting the edges of P.

Let P; = vjvjo - vy, be a path of length & —1(i =1, 2, ---, m), and

let C be a cycle of length /, where v, € V(C)(i =1, 2, -, m) and vy, =
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Ugky, =" = Upp, =U. Thus graph L' is obtained by the paths P; and
the cycle C; see Figure 1. P, and C are denoted by C(L') and P;(L'),
respectively. The connected graph L’ is called a (vyq, Ulk s U215 Ukys ™"

Umis Umk,,s k1> B2, =+, Rpys 1)-1ollipop.

'

Umi Um2
Figurel. Graph L', where Ulk, =Usky =" = Upk, =V

Let P; = v;v;p - v, be a path of length k; —1, where i =1, 2 and
let C be a cycle of length I, where v}, u; € V(C). Thus graph L is
obtained by the paths P;(i = 1, 2) and the cycle C; see Figure 2. P, and C
are denoted by P:(L) and C(L), respectively. The connected graph L is

called a (vyy, U1z, 5 Va1, Vak,s ki1, ko 1)-lollipop.
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Figure 2. Graph L.

Obviously, Graph L. where vy, = vy, 1s a special case of Graph L'.

where m = 2.
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In this paper, we study some primitive non-powerful zero-symmetric

sign pattern matrix A. whose associated graph D(A) is (vyy, vyg ;5 V91,
UZkz; k17 k2; l)' lolhpop or (U117 Ulkl; V21> UZkQ;”';Umh Umkm; k17 k2’ B
k,,; 1)-1ollipop. In Section 3, we consider the bounds on the base of (v;;,
Ulk; 5 U215 U2kys "3 Umls Umk, s B1s Roy ooy R 1)-lollipop, then in Section 4,
we consider the bounds on the base of (vq, Ulk s U215 Ugkys K1, Fo; l)-
lollipop, where vy, # vgp,. We obtain the bounds on the bases of

primitive non-powerful zero-symmetric sign pattern matrix A.
2. Some Preliminaries

Theorem 2.1 [7]. Let S be a primitive, non-powerful signed digraph.
Then we have

(1) There is an integer k such that there exists a pair of SSSD walks of

length k from each vertex x to each vertexy in S.

(2) If there exists a pair of SSSD walks of length k from each vertex x
to each vertex y, then there also exists a pair of SSSD walks of length

k +1 from each vertex u to each vertex v in S.
(3) The minimal such k (as in (1)) is just I(S)-the base of S.

A matrix with all entries equal to 1 is denoted by J. A matrix with all
entries equal to # 1s denoted by #<J. Let A be a primitive generalized

sign pattern matrix. Then

[(A) = min{k| A* = J or #J}. (2.1)

Theorem 2.2 [7]. If S is a primitive signed digraph, then S is non-
powerful if and only if S contains a pair of cycles C; and Cy (say, with

lengths p; and pg, respectively) satisfying one of the following two

conditions:

(A) p; isodd and pg is even and sgn Cy = —;

(B) Both p; and py are odd and sgn C; = —sgn Csy.
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A pair of cycles C; and Cy satisfying (A) or (B) is a “distinguished
cycle pair”. It is easy to see that if C; and C, is a distinguished cycle pair
with length p; and po, respectively, then the closed walks W; = poC;
(walk around Cjpy times) and Wy = p;Cy have the same length p;ps

and the different signs:
(sgnCp)™? = —(sgn Cy ). (2.2)

For a primitive generalized sign pattern matrix A, the local base of A

from i to j, denoted by I4(i, j), is the least integer k such that (A”);

= (Ak )ij for all p > k. (Such that an integer k must exist by (2.1)). From

this definition we have

(A) = La (G, J)- (2.3)

max
i, jeV(D(A))

Theorem 2.3 [2]. For a primitive non-powerful sign pattern matrix A,
suppose R = {l;, -+, 1.} is a set of cycle lengths in D(A) with the property
that g.cd(l, --,1.)=1 and C',C" are two cycles in S(A) with the
property that (sgn C')P2 = —(sgn C")Pt, where py, py are the lengths of
C', C", respectively. Let p be the least common multiple of p; and ps,
i.e., p=Llem(py, py), and dp = &4, -+, 1, ). Then

(1) 146, J) € dp ¢, (s J) + P+ OR-
2) I(A) < max; jey(p(a)) dr,c,c' (s J)+ P+ Op.

Theorem 2.4 [2]. Suppose A is a non-powerful sign pattern matrix of
order n and D(A) is a (vi1, Uigs U215 U2kys " Umis Umk,, s Ris 25 05 25
1)- lollipop, where n = k; + m —1 and k; > 1, then I(A) = 2k,.

Theorem 2.5 [2]. Suppose A is a non-powerful sign pattern matrix of
order n.and D(A) is a (11, Uik 5 U215 Uakys ***5 Umls Uniky, s R1s 1, o5 15 1)-

lollipop, where n = k; > 1, then I(A) = 2n.
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Theorem 2.6 [2]. Suppose A is a sign pattern matrix of order n and
D(A) is a  (v11, Viggs U215 U2kys ***5 Umls Umky, s R1s ts oo 5 1)-lollipop,
where n =k +1l+m-2,1>1,1 is odd and t € {1, 2}. If there exist no

positive 2-cycles in S(A), then
(1) (A) =20+ 2k —3if by > 2
2 W(A)=20l+1if by =1 and m > 1;

(3) (A)=20-1if iy =1 and m = 1.

3. Bounds on the Base of (v, Uik, 5 V21> Uy "5 Umis

Umk,, s #1s kg, =5 Ry 1)-lollipop

Theorem 3.1. Suppose A is a non-powerful sign pattern of order n
and D(A) is a (vi1, Vigs U215 U2y 5 Umls Umky, s Ris Rgy ooy Rpgs 1)-

m
lolly h => >k -(m-1 d ki >1. Th
ollipop, where n ; ;. —(m-1), an max k; > en

I(A) = 2 max k;.

1<i<m

Proof. It is clear that A is primitive. Let K = max k;.

1<i<m

Suppose [(A) = h. Then there exists a pair of SSSD walks from v;;
to v;; of length p for each integer p > h. Note that there is only one walk
from v;; to v;; of length 2k; —1, so A > 2 max k, —1 = 2K — 1. Then we

1<i<m

only need to prove that /(A) < 2 max k; = 2K.
1<ism

Since A is a non-powerful sign pattern matrix, there exists a pair of
cycles C', C" satisfying that (sgn C')P2 = —(sgnC")"! by (2.2), where
D1, Py are the lengths of C' and C”", respectively. Since D(A) only has
cycles with lengths of 1 and 2, it follows that Le.m.(p;, py) = 2. Suppose

x and y are any two (not necessarily distinct) vertices in S(A).
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If X, Y € {Uil> Vi2s =t viki }’ then set

Qx = vyp) + Qv — v, ) + Ry, — ¥) if UR(x — vyy) < UQR(Y = vyy),
e Qx — vi, ) + Qvir, = v;1) + Q(vyy —> ¥) otherwise,
and then (W) < 2(k; —1) < 2K - 2. Otherwise let x € {v;1, vjg, ..., Vi, |
and y € {vj, vjg, ..., Ujkj} where i # j, then set W = @Q(x — vy, )
+Q(v]-kj — y), and thus (W) < (k; —=1) + (k; —1) < 2K - 2.
Take cycle-length set R = {1, 2}. Since in D(A) any cycle must meet

at least one vertex of vjs, U3, -+, Vg, (i=1,2,,,m), Wmust meet C’,

C". Thus dp ¢ cr(x, y) < UW) < 2K - 2. Then ly(x, y) < 2K -2+2+

¢p = 2K = 2 max k; by Theorem 2.3. Therefore, /(A)< 2 max k; by
1<i<m 1<i<m

(2.3). So

I(A) = 2 max k. 0

1<i<m

Corollary 3.1. Suppose A is a non-powerful sign pattern of order n
and D(A) is a (vy1, Uig,; Va1, Vakys k1, ko; 1)- lollipop, where n = ky + ko

-1, and max{k;, kg > 1. Then
I(A) = 2 max{k, kq}.
Theorem 3.2. Suppose A is a sign pattern matrix of order n and

D(A) is @ (vi1, Uik s V215 U2kys "5 Umis Umk,, 5 B1» ko, -+, kps 1)- lollipop,

where n = iki —(m-1),l >1 and [ is odd. If there exist no positive 2-
=1
cyclesin S(A), then
(1) (A)=20+2k —3if by 22 and kg = kg =--- =k, =t € {1, 2};
@ UA)=20+1if k) =1, kg = = k,,, = 2, where m > 1;
@) UA)=20-11if k; =1, wherei =1,2, -, m;

(4) (A) = 20+ 2 max k=3, if ku, hy, -, oy 2 2.
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Proof. The results of (1)-(3) are obtained by Theorem 2.6. Therefore,
we mainly prove (4).
Note that D(A) is strongly connected and contains cycles of lengths 2

and [, where [ is odd. Then A is primitive. Since there exist no positive 2-
cyclesin S(A), (A) of Theorem 2.2 holds. So, A is non-powerful.

Consider C(D(A)), the cycle of the (viq, Uip; Va1, Vagys 5 Umis
Unky, s R1s Ros -5 Ry 1)-1ollipop. Let C = C(D(A)) = vivs -+ vjvy, where
vjvh ---vj are vertices of C(D(A)). Consider the directed cycles C' = v}
vy ---vv; and C" = vjupuy_q ---vyv]. Note that there exist no positive 2-

cycles in S(A) and [/ is odd, so sgn C' = —sgn C".

Let K = max k;.

1<i<m

Let x and y be any two (not necessarily distinct) vertices in D(A). We

discuss the following three cases.

Case 1. x, y € V(C).

If (Qc(x — y)) is even, then set W = Q¢(x — y), otherwise set
W =C\Qc(x - y). Then (W) is even and (W)<[l-1=2K +1-3.
Set Wp =W +C" and Wy = W + C". Thus the pair Wj, W5 is a pair of
SSSD walks from vertex x to y. Obviously I(W;)(i =1, 2), is odd and
I(W;) < 2K + 20 - 3, where i =1, 2. Hence, there exists a pair of SSSD
walks from x to y length 2K + 2[ — 3.

Case 2. x, y ¢ V(C).
If x, y € {vyn, vig, =, Ujg;—1 > Where i € {1, 2, , -, m}, then set

Qs — v, )+ Qo > )+ C i HQx — vy, )+ I(Quy, — ) is 0dd,
W =

Qx — vy, )+ Qv — ¥) otherwise,
and then (W) is even and (W) < 2(k; —1)+1-1<2K +1-3. Set W} =
W + C'" and Wy = W + C". Thus the pair W;, W, is a pair of SSSD walks
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from vertex x to y. Obviously {(W;)(i =1, 2) is odd and I(W;) < 2K + 21
-3, where i = 1, 2. Hence, there exists a pair of SSSD walks from x to y
length 2K + 21 — 3.
Otherwise, let x e {v;1, vjg, -, Vi, 1} and y € {vj1, vjg, -+, Ujkj—1}>

where i # j, and set

Qx — vy, ) + Q(vjkj = ¥)+C if (Q(x — vy, )+ Z(Q(vjkj — y)) is odd,
W =

Qx — v, ) + Q(vjkj - y) otherwise,
and then I(W) is even and (W) < (k; 1)+ (kj —1)+1-1< 2K +1-3.
Set W =W +C" and Wy, = W + C". Thus the pair W, W, is a pair of
SSSD walks from vertex x to y. Obviously {(W;)( =1, 2) is odd and
I(W;) < 2K + 21 -3 where i =1, 2. Hence there exists a pair of SSSD
walks from x to y length 2K + 2] — 3.

Case 3. Only one vertex of x, y belongs to V(C).

Without loss of generality, we may assume x € V(C) and y € {v;,

sz, ey, vjkj—l}' Set

Qc(x = vjp; )+ Qvj; > ) if (Qc(x = vy, )+ URQ(vj; — ¥))is even,
W=

C\ Qc(x —» Uk )+ Q(Ujkj — y) otherwise,
and then (W) is even and (W) < (kj —1)+1-1 < 2K + 1 -3 by the fact
ki >2 for jefl, 2, -, mj. Set Wy =W +C" and Wy = W + C". Thus
the pair Wj, W, is a pair of SSSD walks from vertex x to y. Obviously
(W;)(i=1,2) is odd and I(W;) < 2K + 2] -3, where i =1, 2. Hence,
there exists a pair of SSSD walks from x to y length 2K + 2] — 3.

Therefore

I(A) < 2K +2] -3 <2 max k; + 2] - 3. (3.1)
1<i<m

Suppose the integer ¢ satisfying &k, = max k;.

1<i<m
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We show that there is no pair of SSSD walks of length r = 2/ + 2k,
-4 from vertex vy to vy. Suppose the pair Wy, Wy is a pair of SSSD
walks of length r from v;; to vy;. Since W; is the “union” of Cy and Cj (a
cycle of length ), W, =q;Cy +0;C;,a; 20,b; 20 and b, is even
(i=12).

If b, = by = 0, then a; = ay. Since there exist no positive 2-cycles in
S(A), sgn(W;) = sgn(Wy) = (-)°L. It contradicts that W; and W, have
different signs. Therefore b = by = 0 does not hold. We may assume

by > 0. Note that by is even, so b; > 2.

Since by > 2, wy contains vy, . Note that Wy is a walk from vy to
Ui, S0 Wy contains vy, vy, -+, vy, . Then (W) > 2(k —1) + byl > 2k, —
2 + 21, which contradicts (W, ) = 2] + 2k, — 4. Hence, there exists no
pair of SSSD walks of length r = 2] + 2k, — 4 from vertex v, to vy.

Therefore

I(A) > 2] + 2k, —3 = 2 max k; + 2] - 3. (3.2)

1<i<m
Combining (3.1) and (3.2), we have

I(A) = 2 max k; + 21 - 3. 0
1<ism

Theorem 3.3. Suppose A is a non-powerful sign pattern matrix of

order n.and D(A) is a (vi1, Vig,5 V215 U2kys "5 Umls Unk, 5 R1s Roy oy ks

m
1)- lollipop, where n = Y k; = (m 1)+ 1,1 > 1 and [ is odd. If there exist
1=1

one vertex w € V(C) in S(A) such that w is contained in a positive 2-cycle

C' and a negative 2-cycle C", then I(A) < 2 [nax ki +1-1.
sism

Proof. Note that D(A) is strongly connected and contains cycles of

lengths 2 and [/, where [ is odd. Then A is primitive. Let x and y be any
two (not necessarily distinct) vertices in S(A).
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If x, y e V(C), then set W = Qc(x — w)+ Qc(w — y) and (W) <
[ -1, otherwise set W = Q(x — v)+ 2Qc(v » w)+ Qw — y) and (W)

< (l_l)+2112i?r(n(ki -1)= 2112.:51@ +1-3.

Set W =W +C" and Wy = W + C". Thus the pair Wj, W, is a pair
of SSSD walks from vertex x to y. Obviously I(W;) < ZII?%X ki +1-1,
sism

where i =1, 2. Hence, there exists a pair of SSSD walks from x to y

length 2 max k; + [ — 1. Therefore
1<i<m

I(A) < 2 max k; +1-1. 0

1<i<m

Theorem 3.4. Suppose A is a non-powerful sign pattern matrix of
order n.and D(A) is a (v11, Uik, 5 Va1 Vakys " Umls Umky, s Kis Ras ooy Rins

m

1)- lollipop, where n = Zki ~(m-1)+1,1>1 and lis odd. If there exist
=1

one vertex w € {Vpy, Vpg, =+, Upky 1| for some h e fl, 2, -, m} in S(A)

such that w is contained in a positive 2-cycle C' and a negative 2-cycle
C", then

I(A) < max hki+2kh +1-4.

1<i<m,i#

Proof. Note that D(A) is strongly connected and contains cycles of

length 2 and [, where [ is odd. Then A is primitive. Let x and y be any two
(not necessarily distinct) vertices in S(A).

Let

T = max k.
1<i<m,i#h

If x, y € V(C), thenset W = Qp(x — v)+2Q(v — w)+ Qc(v — ), thus
IW)<1-1+2(ky, —2)=2k, +1-5<T+2ky, +1-6. Otherwise, we

consider the following cases.

Case 1. x, y ¢ V(C).

Subcase 1.1. x, y € {vj1, Vg, ", Vjfy—1 }-
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If i =h, then set W =Q(x - w)+Qw — y) and (W) < 2(ky, —2) =
2ky, —4 < T + 2k, +1— 6. Otherwise set W = Q(x — v)+2Q(v - w) +
Q(U - y) and l(W) < 2(kl —1)+2(kh —2) = 2kl +2kh -6 < T+2kh +
[-6.

Subcase 1.2. One vertex of x and y is in {vp1, Upg, =+, Up, -1 -
If ye{on, vng, s Ungy-1)s then set W=@Qx - v)+ Qv —» w)+

Qw — y)and W) < T -1+ky, —2+ky, —2=T +2ky, —5<T + 2k, +
[ - 6. Otherwise set W = Q(x - w)+ Qw — v)+ Qv — y) and (W) <
T-1+ky,—2+ky, —-2=T+2k, -5<T+2k;, +1-6.

Case 2. Only one vertex of x and y is in V(C).

If x € V(C), then set

Qelx > )+ QU > w)+ Qw — y) if ¥y € {Up1, Va2, =, Vhky-1 )
W =

Qc(x - v)+2Qv > w)+ Qv — y) otherwise,
and

Elahy —2+ky, -2 =2k, —4+ 5L <2k, +1-5 if ye {vp,vpe, s Upgy-1)5
(W) <

L o(ky —2)+ T -1< 2k, +T+1-6 otherwise,

2

<2k +T+1-6.

Otherwise set

Qlx »> w)+Qw — v)+ Qv - y) if x € {Up1, V42, =, Vhky-1 )
W =
Qlx - v)+2Q(v » w)+ Qc(v — y) otherwise,
and
Ll ok —24ky —2=2k —4+LL <2k +1-5 if { }
5+ kn h h 5 < 2k X € {Un1,Un2, "5 Vpky -1 1
(W) <

Bl 2k -2)+T-1< 2k, +T+1-6 otherwise,
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<2k, +T+1-6<T+2k, +1-6.

Set W =W +C" and Wy = W + C". Thus the pair Wj, Wy is a pair of
SSSD walks from vertex x to y. Obviously I(W;) << T + 2k, +1 -6,
where i =1, 2. Hence, there exists a pair of SSSD walks from x to y

length < T + 2k, + [ — 6. Therefore

WA)<T +2k, +1-6 =2k, + max k; +1 - 4. O
1<i<m

4. Bounds on the Base of (v, vip,; Va1, Ugp, sk, ko; 1)-lollipop,

where vy # vgp,

Theorem 4.1. Suppose A is a sign pattern matrix of order n and
D(A) is a (v11, Vi, ; Va1, Vo, ki, ke 1)-lollipop, where n = ky + 1+ ky —
2, k; > 2(i =1, 2) and [ is odd. If there exist no positive 2-cycles in S(A),

3l-5
CE

then I(A) < 2max{k,, ky } +

Proof. Note that D(A) is strongly connected and contains cycles of

lengths 2 and [/, where [ is odd. Then A is primitive. Since there exist no
positive 2-cycles in S(A), (A) of Theorem 2.2 holds. So A is non-powerful.

Clearly [ > 3.

Let x and y be any two (not necessarily distinct) vertices in S(A).

-1

<2
2

If x, y e V(C), then set W = Qc(x — y) and thus (W) <

i-5 . Otherwise, we consider the following cases.

max{ky, kg } +
Case 1. x, y ¢ V(C).
If x, y € {vi1,vj9, -, Vg1 } for i =1, 2, then set
Qx = v;1 )+ Qv — vy ) + Qv = ¥) i UQ(x - v;1)) < UR(Y - v;1)),

W =
Q(x — vy, ) + Qvg, — vy )+ Q(vyy > y)  otherwise,
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and thus (W) < 2(k; —1) < 2max{k;, ko | + l;5 .
Otherwise only one vertex of x, y isin {v;;,v19, -, ULk -1 }, and set
Qx = vip )+ Qc(vry, — Vony )+ Quag, —> ¥)  if x € {vy1,v19, -+, vy )
W =

Q(x — vap, ) + Qc(var, — vip, )+ Qv — ¥)  otherwise,

and thus (W) < L1 w by <14 by -1 < 2maxihy, o)+ £52
Case 2. Only one vertex x, y isin V(C).
Set
Qx = vip, )+ Qclv, = ) if x € {vy,vi9, -, vy} for i =1, 2,
W =
Qol(x — vip, )+ Quip, = ) if x € {vy,vig, -+, vy 1 f for i =1, 2,
-1 -5
and thus (W) < 3 +k -1 < 2max{ky, kg }+ 5

Consider C(D(A)), the cycle of the (vi1, vig; Va1, Vorys Rrs kos 1)
lollipop. Let C = C(D(A)) = vjvy ---vjv}, where vivy ---v] are vertices of
C(D(A)). Consider the directed cycles C' = vjvy ---vjv; and C" = vjvjvj_;
---vyv]. Note that there exist no positive 2-cycles in S(A) and [ is odd, so

sgn C' = —sgn C".

Set W =W +C" and Wy = W + C". Thus the pair Wj, W, is a pair
of SSSD walks from x to y. We see that I(W;) = (W) + 1 < 2max{k, k9 }

3l-5

5 where i =1, 2. Hence, there exists a pair of SSSD walks from

3l-5
5

x toy of length 2 max{k,, ky} +

3l-5
5 U

Therefore [(A) < 2 max{k,, ky } +
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Theorem 4.2. Suppose A is a sign pattern matrix of order n and
D(A) is a (v11, Vi, ; Va1, Varys ki, ko 1)-lollipop, where n = ky + 1+ ky —
2,k >2(i=1,2),1 is odd and | # 3(mod 4). If there exist no positive 2-

3l-5

cyclesin S(A), then I(A) = 2max{k;, ky} + 3

Proof. It is clear that by Theorem 4.1,

3 -5

I(A) < 2max{ky, ky} + 3

(4.1)

Without loss of generality, assume that k, = max{k;, ks }. Then we show
31-5

2
vertex vy; to vy;. Let the pair Wy, Wy be a pair of SSSD walks of length

that there is no pair of SSSD walks of length r = 2k; + -1 from

r from vy to vy;. Since W, is the “union” of Cy and Cj (a cycle of length
l), VVZ = (liCz + biCl’ Q; > 0, bi > 0.

If b, >2(i=1,2), then (W)= 2(k; —1)+b;l > 2k; — 2 + 2], which
3-5

contradicts I(W;) = 2k; + —1. Therefore, b; <1 for each i € {1, 2}.

If b = by = 0, then a; = ay. Since there exist no positive 2-cycles in
S(A), sgn(W; ) = sgn(Wy) = (-)™. It contradicts that W; and W, have
different signs. Therefore, b; = by = 0 does not hold.

If (by =1,b5 =0) or (b) =0,by =1), then [ =2la; —ay|, which
contradicts that [ is odd.

It b —by =1, then a = ay :W:kﬁl‘?’-l, which
contradicts that a; and ay are integers for / # 3(mod 4).
Therefore, there is no pair of SSSD walks of length r = 2k + 312_ >
-1 from vertex vy; to vy7. Thus
(A) > 2k + 220 — o max(hy, ko) + 228 (4.2)

2
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Combining (4.1) and (4.2), we have

3l-5
2

I(A) = 2max{ky, kg } + . 0

Theorem 4.3. Suppose A is a non-powerful sign pattern matrix of

order n.and D(A) is a (v, Uip,; Va1, Uapys k1, kg3 1)- lollipop, where n =
ki +ky+1—-2,1>1, k1, kg 22 and | is odd. If there exist one vertex
w e V(C) in S(A) such that w is contained in a positive 2-cycle C' and a
negative 2-cycle C", then I(A) < 2max{k,, ky} +1-1.

Proof. Note that D(A) is strongly connected and contains cycles of
length 2 and [/, where [ is odd. Then A 1s primitive. Let x and y be any two

(not necessarily distinct) vertices in S(A).

If x, ye V(C), then set W = Qc(x - w)+ Qc(w — y) and (W) <
1-1<2max{ky, ko}+1-3 If x, y € {vy,v59, -+, vy 1 } for iefl, 2},
then set W = @Q(x — vy, )+2Qc(viy, > w)+ Qv — ¥), and then
IW)< 2k —1)+1-1=2k +1-3<2max{ky, by} +1-3; If x e {v;,
Vi, Uiki—l} and y € {vj,vjq, -, vjkj,l}, where i, j € {1, 2} and
i#j, set Q(x = vy, )+ Qc(vy, - w)+ Qc(w — Ujkj)+ Q(vjkj - y),
and then [I(W)<(k —1)+ (kg —1)+1-1=Fk +ky+1-3 < 2max{k,
ko } + 1 — 3; Otherwise, only one vertex of x, y belongs to V(C), and for
i e{l, 2}, set

Qclx — w)+Qc(w — vy, ) + vy, —» y) if x € V(C),
W =
Qx — v, )+ Qc(vyy, > w)+Qclw — y) if y e V(C),
and
IW)< (kb —1)+1-1=Fk; +1-2 < 2max{ky, kg } +1-3.
Let Wy =W +C" and Wy = W + C". Thus there exists a pair of SSSD
walks W) and W, from x to y. Hence, there exists a pair of SSSD walks
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from x to y of length 2 max{k, ky}+1—-1. Thus [(A) < 2max{k,
kot +1-1. N

Theorem 4.4. Suppose A is a non-powerful sign pattern matrix of
order n and D(A) is a (vi1, Uip,; Va1, Vakys k1> Ro; 1)-lollipop, where n =
Ry +kg +1-2,1>1,Fk 23, kg 22 and lis odd. If there exist one vertex
w e {vyg, -+, Vi1t in S(A) such that w is contained in a positive 2-

cycle C' and a negative 2-cycle C", then
I(A) < 2k + 2Ry +1 5.

Proof. Note that D(A) is strongly connected and contains cycles of

length 2 and [, where [ is odd. Then A is primitive. Let x and y be any two
(not necessarily distinct) vertices in S(A).

If x,yeV(C), then set W =@Qc(x — vy )+2Qvyy — w)+Qc
(Ui, = ¥), thus (W) <1 -1+2(k —2) =2k +1-5< 2k + 2k +
[ — 7. Otherwise, we consider the following cases.

Case 1. x, y ¢ V(O).
Subcase 1.1. x, y € {v;1,0;9, -, U1} for i € {1, 2}.

If i =1, then set W =Q(x - w)+ Qw — y) and (W) < 2(k; —2) =
2k — 4 < 2k + 2Ry +1—T. Otherwise set W = Q(x — vap, ) + 2Q¢(vap,
= U1, ) + 2Q(v1g, > w) + Q(vgp, — y) and UW) < 2kg + 2k +1-1.

Subcase 1.2. One vertex of x and y is in {vgy, vgg, =+, Ugpy—1 |-
If Y € {0117 V12, "> Ulkl—l}’ then set W = Q(x - 02k2)+ QC(U2k2 -
-1

Ui )+ Qv = w)+Qw — y) and (W) < (kg 1)+ 5+ (kB —2)+

(ky —2) = ky +Z_Tl+2k1 5 < 2k + 2ky +1— 7. Otherwise set W = @
(x > w)+ Qw - vy )+ Qe(vig, = Vap, )+ Qvog, —» ¥) and (W) <

(k1—2)+(k1—2)+l_71+(k2—1)=k2+l_Tl+2kl—5§2k1+2k2+l—7.
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Case 2. Only one vertex of x and y is in V(C).

Subcase 2.1. x € {vj1, Vg, =, Vjjy 1 }-

If i=1, then set W =@Q(x — vgp, )+ Qc(vap, = vip )+ 2Q(vyy —
w)+Qc(vyy, = ) and (W) < (kg —1)+2(k; —2)+(1-1) = kg + 2k +
l—6 < 2k + 2kg +1—7. Otherwise set W = Q(x - w)+ Q(w — vyp ) +

L s S

Qc(vyy, = ¥) and W) < (b —2)+(k —2)+ 5 5

2k1 +2k2 +1-1.
Subcase 2.2. y € {v;1, Vi, =+, Vg1 |-

If i#1, then set W =Qc(x — vy )+ 2@y — w)+ Qc(viy —
U2k2 ) + Q(02k2 - y) and l(W) < (kz - 1) + Z(kl - 2) + (l — 1) = k2 + 2k1
+1—6 < 2k +2ky + 1~ 7. Otherwise set W = Qc(x — vip )+ Qvyy, —

w)+Qw — y) and W) < (k) —2)+ (k& _2)+1—le l;l

+ 2k1 -4 <
2k + 2Ry +1-1.

Set W =W +C" and Wy = W + C". Thus the pair Wy, W, is a pair
of SSSD walks from vertex x to y. Obviously (W) < 2k; + 2ky +1 -5

where i =1, 2. Hence, there exists a pair of SSSD walks from x to y

length 2k; + 2kg + I — 5. Therefore,
Z(A)S2k1+2k2+l—5. U
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